
Everything curl

Downloads

"Download" means getting data from a server on a network, and the server is then clearly
considered to be "above" you. This is loading data down from the server onto your machine
where you are running curl.

Downloading is probably the most common use case for curl—retrieving the specific data
pointed to by a URL onto your machine.

What exactly is downloading?

You specify the resource to download by giving curl a URL. curl defaults to downloading a
URL unless told otherwise, and the URL identifies what to download. In this example the
URL to download is "http://example.com":

curl http://example.com

The URL is broken down into its individual components (as explained elsewhere), the
correct server is contacted and is then asked to deliver the specific resource—often a file.
The server then delivers the data, or it refuses or perhaps the client asked for the wrong
data and then that data is delivered.

A request for a resource is protocol-specific so a FTP:// URL works differently than an
HTTP:// URL or an SFTP:// URL.

A URL without a path part, that is a URL that has a host name part only (like the
"http://example.com" example above) will get a slash ('/') appended to it internally and then
that is the resource curl will ask for from the server.

If you specify multiple URLs on the command line, curl will download each URL one by one.
It will not start the second transfer until the first one is complete, etc.

http://example.com/
https://github.com/bagder/everything-curl/tree/1ff0cc63f4e593145c71f32fb5cc128e3d9d4424/usingcurl/cmdline-urls.md
http://example.com/

Storing downloads

If you try the example download as in the previous section, you will notice that curl will
output the downloaded data to stdout unless told to do something else. Outputting data to
stdout is really useful when you want to pipe it into another program or similar, but it is not
always the optimal way to deal with your downloads.

Give curl a specific file name to save the download in with -o [filename] (with

--output as the long version of the option), where filename is either just a file name, a

relative path to a file name or a full path to the file.

Also note that you can put the -o before or after the URL; it makes no difference:

curl -o output.html http://example.com/1
curl -o /tmp/index.html http://example.com/2
curl http://example.com -o ../../folder/savethis.html3

This is, of course, not limited to http:// URLs but works the same way no matter which type
of URL you download:

curl -o file.txt ftp://example.com/path/to/file-name.ext

If you ask curl to send the output to the terminal, it attempts to detect and prevent binary
data from being sent there since that can seriously mess up your terminal (sometimes to
the point where it stops working). You can override curl's binary-output-prevention and force
the output to get sent to stdout by using -o - .

curl has several other ways to store and name the downloaded data. Details follow.

Download to a file named by the URL

Many URLs, however, already contain the file name part in the rightmost end. curl lets you
use that as a shortcut so you do not have to repeat it with -o . So instead of:

curl -o file.html http://example.com/file.html

You can save the remove URL resource into the local file 'file.html' with this:

curl -O http://example.com/file.html

This is the -O (uppercase letter o) option, or --remote-name for the long name version.

The -O option selects the local file name to use by picking the file name part of the URL that
you provide. This is important. You specify the URL and curl picks the name from this data.
If the site redirects curl further (and if you tell curl to follow redirects), it does not change the
file name curl will use for storing this.

Get the target file name from the server

HTTP servers have the option to provide a header named Content-Disposition: in

responses. That header may contain a suggested file name for the contents delivered, and
curl can be told to use that hint to name its local file. The -J / --remote-header-name

enables this. If you also use the -O option, it makes curl use the file name from the URL by

default and only if there's actually a valid Content-Disposition header available, it switches
to saving using that name.

-J has some problems and risks associated with it that users need to be aware of:

1. It will only use the rightmost part of the suggested file name, so any path or directories
the server suggests will be stripped out.

2. Since the file name is entirely selected by the server, curl will, of course, overwrite any
preexisting local file in your current directory if the server happens to provide such a file
name.

3. File name encoding and character sets issues. curl does not decode the name in any
way, so you may end up with a URL-encoded file name where a browser would
otherwise decode it to something more readable using a sensible character set.

HTML and charsets

curl will download the exact binary data that the server sends. This might be of importance
to you in case, for example, you download a HTML page or other text data that uses a
certain character encoding that your browser then displays as expected. curl will then not
translate the arriving data.

A common example where this causes some surprising results is when a user downloads a
web page with something like:

curl https://example.com/ -o storage.html

…and when inspecting the storage.html file after the fact, the user realizes that one or

more characters look funny or downright wrong. This might occur because the server sent
the characters using charset X, while your editor and environment use charset Y. In an ideal
world, we would all use UTF-8 everywhere but unfortunately, that is still not the case.

A common work-around for this issue that works decently is to use the common iconv

utility to translate a text file to and from different charsets.

Compression

curl allows you to ask HTTP and HTTPS servers to provide compressed versions of the
data and then perform automatic decompression of it on arrival. In situations where
bandwidth is more limited than CPU this will help you receive more data in a shorter
amount of time.

HTTP compression can be done using two different mechanisms, one which might be
considered "The Right Way" and the other that is the way that everyone actually uses and is
the widespread and popular way to do it. The common way to compress HTTP content is
using the Content-Encoding header. You ask curl to use this with the --compressed

option:

curl --compressed http://example.com/

With this option enabled (and if the server supports it) it delivers the data in a compressed
way and curl will decompress it before saving it or sending it to stdout. This usually means
that as a user you do not really see or experience the compression other than possibly
noticing a faster transfer.

The --compressed option asks for Content-Encoding compression using one of the

supported compression algorithms. There's also the rarer Transfer-Encoding method,
which is the header that was created for this automated method but was never really widely
adopted. You can tell curl to ask for Transfer-Encoded compression with --tr-encoding :

curl --tr-encoding http://example.com/

In theory, there's nothing that prevents you from using both in the same command line,
although in practice, you may then experience that some servers get a little confused when
ask to compress in two different ways. It's generally safer to just pick one.

Shell redirects

When you invoke curl from a shell or some other command-line prompt system, that
environment generally provides you with a set of output redirection abilities. In most Linux
and Unix shells and with Windows' command prompts, you direct stdout to a file with
> filename . Using this, of course, makes the use of -o or -O superfluous.

curl http://example.com/ > example.html

Redirecting output to a file redirects all output from curl to that file, so even if you ask to
transfer more than one URL to stdout, redirecting the output will get all the URLs' output
stored in that single file.

curl http://example.com/1 http://example.com/2 > files

Unix shells usually allow you to redirect the stderr stream separately. The stderr stream is
usually a stream that also gets shown in the terminal, but you can redirect it separately
from the stdout stream. The stdout stream is for the data while stderr is metadata and
errors, etc., that are not data. You can redirect stderr with 2>file like this:

curl http://example.com > files.html 2>errors

Multiple downloads

As curl can be told to download many URLs in a single command line, there are, of course,
times when you want to store these downloads in nicely named local files.

The key to understanding this is that each download URL needs its own "storage
instruction". Without said "storage instruction", curl will default to sending the data to
stdout. If you ask for two URLs and only tell curl where to save the first URL, the second one
is sent to stdout. Like this:

curl -o one.html http://example.com/1 http://example.com/2

The "storage instructions" are read and handled in the same order as the download URLs so
they do not have to be next to the URL in any way. You can round up all the output options
first, last or interleaved with the URLs. You choose.

These examples all work the same way:

curl -o 1.txt -o 2.txt http://example.com/1 http://example.com/21
curl http://example.com/1 http://example.com/2 -o 1.txt -o 2.txt2
curl -o 1.txt http://example.com/1 http://example.com/2 -o 2.txt3
curl -o 1.txt http://example.com/1 -o 2.txt http://example.com/24

The -O is similarly just an instruction for a single download so if you download multiple

URLs, use more of them:

curl -O -O http://example.com/1 http://example.com/2

Use the URL's file name part for all URLs

As a reaction to adding a hundred -O options when using a hundred URLs, we introduced

an option called --remote-name-all . This makes -O the default operation for all given

URLs. You can still provide individual "storage instructions" for URLs but if you leave one
out for a URL that gets downloaded, the default action is then switched from stdout to -O
style.

"My browser shows something else"

A common use case is using curl to get a URL that you can get in your browser when you
paste the URL in the browser's address bar.

A browser getting a URL as input does so much more and in so many different ways than
curl that what curl shows in your terminal output is probably not at all what you see in your
browser window.

Client differences

Curl only gets exactly what you ask it to get and it never parses the actual content—the data
—that the server delivers. A browser gets data and it activates different parsers depending
on what kind of content it thinks it gets. For example, if the data is HTML it will parse it to
display a web page and possibly download other sub resources such as images, JavaScript
and CSS files. When curl downloads a HTML it will just get that single HTML resource, even
if it, when parsed by a browser, would trigger a whole busload of more downloads. If you
want curl to download any sub-resources as well, you need to pass those URLs to curl and
ask it to get those, just like any other URLs.

Clients also differ in how they send their requests, and some aspects of a request for a
resource include, for example, format preferences, asking for compressed data, or just
telling the server from which previous page we are "coming from". curl's requests will differ
a little or a lot from how your browser sends its requests.

Server differences

The server that receives the request and delivers data is often setup to act in certain ways
depending on what kind of client it thinks communicates with it. Sometimes it is as
innocent as trying to deliver the best content for the client, sometimes it is to hide some
content for some clients or even to try to work around known problems in specific browsers.
Then there's also, of course, various kind of login systems that might rely on HTTP
authentication or cookies or the client being from the pre-validated IP address range.

Sometimes getting the same response from a server using curl as the response you get
with a browser ends up really hard work. Users then typically record their browser sessions
with the browser's networking tools and then compare that recording with recorded data
from curl's --trace-ascii option and proceed to modify curl's requests (often with

-H / --header) until the server starts to respond the same to both.

This type of work can be both time consuming and tedious. You should always do this with
permission from the server owners or admins.

Intermediaries' fiddlings

Intermediaries are proxies, explicit or implicit ones. Some environments will force you to use
one or you may choose to use one for various reasons, but there are also the transparent
ones that will intercept your network traffic silently and proxy it for you no matter what you
want.

Proxies are "middle men" that terminate the traffic and then act on your behalf to the remote
server. This can introduce all sorts of explicit filtering and "saving" you from certain content
or even "protecting" the remote server from what data you try to send to it, but even more so
it introduces another software's view on how the protocol works and what the right things
to do are.

Interfering intermediaries are often the cause of lots of head aches and mysteries down to
downright malicious modifications of content.

We strongly encourage you to use HTTPS or other means to verify that the contents you are
downloading or uploading are really the data that the remote server has sent to you and
that your precious bytes end up verbatim at the intended destination.

Rate limiting

When curl transfers data, it will attempt to do that as fast as possible. It goes for both
uploads and downloads. Exactly how fast that will be depends on several factors, including
your computer's ability, your own network connection's bandwidth, the load on the remote
server you are transferring to/from and the latency to that server. And your curl transfers are
also likely to compete with other transfers on the networks the data travels over, from other
users or just other apps by the same user.

In many setups, however, you will find that you can more or less saturate your own network
connection with a single curl command line. If you have a 10 megabit per second

connection to the Internet, chances are curl can use all of those 10 megabits to transfer
data.

For most use cases, using as much bandwidth as possible is a good thing. It makes the
transfer faster, it makes the curl command complete sooner and it will make the transfer
use resources from the server for a shorter period of time.

Sometimes you will, however, find that having curl starve out other network functions on
your local network connection is inconvenient. In these situations you may want to tell curl
to slow down so that other network users get a better chance to get their data through as
well. With --limit-rate [speed] you can tell curl to not go faster than the given number

of bytes per second. The rate limit value can be given with a letter suffix using one of K, M
and G for kilobytes, megabytes and gigabytes.

To make curl not download data any faster than 200 kilobytes per second:

curl https://example.com/ --limit-rate 200K

The given limit is the maximum average speed allowed, counted during the entire transfer. It
means that curl might use higher transfer speeds in short bursts, but over time it uses no
more than the given rate.

Also note that curl never knows what the maximum possible speed is—it will simply go as
fast as it can and is allowed. You may know your connection's maximum speed, but curl
does not.

Maximum filesize

When you want to make sure your curl command line will not try to download a too-large
file, you can instruct curl to stop before doing that, if it knows the size before the transfer
starts! Maybe that would use too much bandwidth, take too long time or you do not have
enough space on your hard drive:

curl --max-filesize 100000 https://example.com/

Give curl the largest download you will accept in number of bytes and if curl can figure out
the size before the transfer starts it will abort before trying to download something larger.

There are many situations in which curl cannot figure out the size at the time the transfer
starts and this option will not affect those transfers, even if they may end up larger than the
specified amount.

Storing metadata in file system

When saving a download to a file with curl, the --xattr option tells curl to also store

certain file metadata in "extended file attributes". These extended attributes are
standardized name/value pairs stored in the file system, assuming one of the supported file
systems and operating systems are used.

Currently, the URL is stored in the xdg.origin.url attribute and, for HTTP, the content type

is stored in the mime_type attribute. If the file system does not support extended attributes

when this option is set, a warning is issued.

Raw

When --raw is used, it disables all internal HTTP decoding of content or transfer

encodings and instead makes curl passed on unaltered, raw, data.

This is typically used if you are writing a middle software and you want to pass on the
content to another HTTP client and allow that to do the decoding instead.

Retrying failed attempts

Normally curl will only make a single attempt to perform a transfer and return an error if not
successful. Using the --retry option you can tell curl to retry certain failed transfers.

If a transient error is returned when curl tries to perform a transfer, it will retry this number of
times before giving up. Setting the number to 0 makes curl do no retries (which is the
default). Transient error means either: a timeout, an FTP 4xx response code or an HTTP 5xx
response code.

When curl is about to retry a transfer, it will first wait one second and then for all
forthcoming retries it will double the waiting time until it reaches 10 minutes which then will
be the delay between the rest of the retries. Using --retry-delay you can disable this

exponential backoff algorithm and set your own delay between the attempts. With
--retry-max-time you cap the total time allowed for retries. The --max-time option will

still specify the longest time a single of these transfers is allowed to spend.

Resuming and ranges

Resuming a download means first checking the size of what is already present locally and
then asking the server to send the rest of it so it can be appended. curl also allows
resuming the transfer at a custom point without actually having anything already locally
present.

curl supports resumed downloads on several protocols. Tell it where to start the transfer
with the -C, --continue-at option that takes either a plain numerical byte counter offset

where to start or the string - that asks curl to figure it out itself based on what it knows.

When using - , curl will use the destination file name to figure out how much data that is

already present locally and ask use that as an offset when asking for more data from the
server.

To start downloading an FTP file from byte offset 100:

curl --continue-at 100 ftp://example.com/bigfile

Continue downloading a previously interrupted download:

curl --continue-at - http://example.com/bigfile -O

If you instead just want a specific byte range from the remote resource transferred, you can
ask for only that. For example, when you only want 1000 bytes from offset 100 to avoid
having to download the entire huge remote file:

curl --range 100-1099 http://example.com/bigfile

